ESD Protection Exceeds JESD 22

2000-V Human-Body Model (A114-A)200-V Machine Model (A115-A)

Flow-Through Architecture Optimizes PCB

Latch-Up Performance Exceeds 500 mA Per

Layout

JESD 17

SCBS784 - NOVEMBER 2003

- Controlled Baseline

 One Assembly/Test Site, One Fabrication Site
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree[†]
- Member of the Texas Instruments Widebus™ Family
- UBT[™] Transceiver Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low Static-Power Dissipation
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})
- Supports Unregulated Battery Operation Down To 2.7 V
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at V_{CC} = 3.3 V, $T_A = 25^{\circ}C$
- I_{off} and Power-Up 3-State Support Hot Insertion
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise

[†] Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

description/ordering information

The SN74LVTH16501 is an 18-bit universal bus transceiver designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus and UBT are trademarks of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright $\ensuremath{\textcircled{}}$ 2003, Texas Instruments Incorporated

-	1	-	

DGG PACKAGE (TOP VIEW)										
			1							
OEAB	1	U 56	GND							
LEAB	2	55	CLKAB							
A1	3	54	B1							
GND	4	53	GND							
A2	5	52	B2							
A3	6	51	B3							
V _{CC}	7	50	V _{CC}							
A4	8	49	B4							
A5	9	48	B5							
A6	10	47	B6							
GND	11	46	GND							
A7	12	45	B7							
A8	13	44	B8							
A9	14	43	B9							
A10	15	42	B10							
A11	16	41	B11							
A12	17	40	B12							
GND	18	39	GND							
A13	19	38	B13							
A14	20	37	B14							
A15	21	36	B15							
V _{CC}	22	35	V _{CC}							
A16	23	34	B16							
A17	24	33	B17							
GND	25	32] GND							
A18	26	31	B18							
OEBA	27	30	CLKBA							
LEBA	28	29] GND							

SCBS784 - NOVEMBER 2003

description/ordering information (continued)

ORDERING INFORMATION

TA	PACKAGE	:†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	TSSOP – DGG	Tape and reel	CLVTH16501IDGGREP	LH16501EP

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design quidelines are available at www.ti.com/sc/package.

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.

Data flow for B to A is similar to that of A to B, but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active high and OEBA is active low).

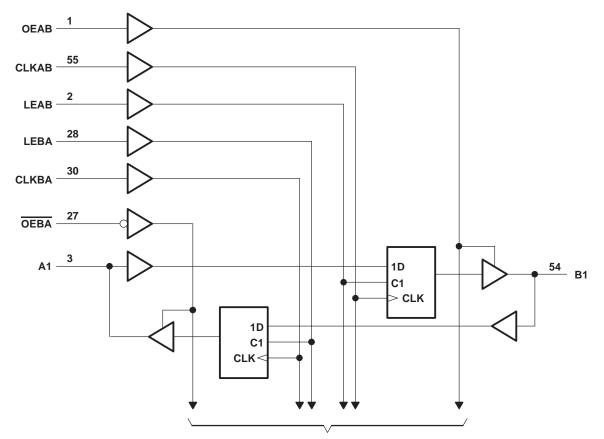
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor and OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

This device is fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

I ONOTION TABLE:											
	INPUTS										
OEAB	LEAB	CLKAB	Α	В							
L	Х	Х	Х	Z							
н	Н	Х	L	L							
н	Н	Х	Н	Н							
н	L	\uparrow	L	L							
н	L	\uparrow	Н	Н							
н	L	Н	Х	в ₀ ‡ в ₀ §							
Н	L	L	Х	в ₀ §							

FUNCTION TABLE[†]


[†]A-to-B data flow is shown; B-to-A flow is similar, but uses OEBA, LEBA, and CLKBA.

[‡]Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low

Soutput level before the indicated steady-state input conditions were established

logic diagram (positive logic)

To 17 Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance	
or power-off state, V _O (see Note 1)	–0.5 V to 7 V
Voltage range applied to any output in the high state, V _O (see Note 1)	\dots –0.5 V to V _{CC} + 0.5 V
Current into any output in the low state, I _O	128 mA
Current into any output in the high state, I _O (see Note 2)	64 mA
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I_{OK} ($V_O < 0$)	
Package thermal impedance, θ _{JA} (see Note 3)	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

- 2. This current flows only when the output is in the high state and $V_O > V_{CC}$.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCBS784 - NOVEMBER 2003

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
V _{CC}	Supply voltage	2.7	3.6	V	
VIH	High-level input voltage	2		V	
VIL	Low-level input voltage		0.8	V	
VI	Input voltage				V
ЮН	High-level output current				mA
IOL	Low-level output current			64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled		10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate		200		μs/V
Т _А	Operating free-air temperature		-40	85	°C

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

RAMETER	TEST CONDITIO	DNS	MIN TYP [†]	MAX	UNIT	
	V _{CC} = 2.7 V,	l _l = –18 mA		-1.2	V	
	$V_{CC} = 2.7 V \text{ to } 3.6 V,$	I _{OH} = −100 μA	V _{CC} -0.2			
	V _{CC} = 2.7 V,	I _{OH} = –8 mA	2.4		V	
/IK /OH /OL I Control inputs A or B ports‡ off I(hold) A or B ports OZPU OZPD	V _{CC} = 3 V,	2				
	N 07V	I _{OL} = 100 μA		0.2		
	V _{CC} = 2.7 V	I _{OL} = 24 mA		0.5		
		I _{OL} = 16 mA		0.4	V	
	V _{CC} = 3 V	I _{OL} = 32 mA		0.5		
		I _{OL} = 64 mA		0.55		
	V _{CC} = 3.6 V,	$V_I = V_{CC} \text{ or } GND$		±1		
Control inputs	V _{CC} = 0 or 3.6 V,	V _I = 5.5 V		10		
A or B ports‡		V _I = 5.5 V	2		μA	
	r B ports [‡] $V_{CC} = 3.6 V$	VI = VCC		1		
		$V_{I} = 0$		-5		
	$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 4.5 V		±100	μA	
	N 9Y	V _I = 0.8 V	75			
A or B ports	VCC = 3 V	V _I = 2 V	-75		μA	
	V _{CC} = 3.6 V§,	= 3.6 V§, $V_{I} = 0$ to 3.6 V				
	$V_{CC} = 0$ to 1.5 V, $V_O = 0.5$ V to 3 V, \overline{OE}/OE	= don't care		±100	μA	
	$V_{CC} = 1.5$ V to 0, $V_{O} = 0.5$ V to 3 V, \overline{OE}/OE	= don't care		±100	μA	
		1		0.19		
	$V_{CC} = 3.6 V$, $I_{C} = 0$, $V_{I} = V_{CC}$ or GND			5	mA	
				0.19		
	$V_{CC} = 3 V$ to 3.6 V, One input at $V_{CC} = 0.6 V$		1	0.2	mA	
			4		pF	
	$V_{O} = 3 V \text{ or } 0$		10		pF	
	A or B ports‡	$V_{CC} = 2.7 V,$ $V_{CC} = 2.7 V \text{ to } 3.6 V,$ $V_{CC} = 2.7 V,$ $V_{CC} = 3 V,$ $V_{CC} = 3 V,$ $V_{CC} = 3 V$ $V_{CC} = 3.6 V,$ $V_{CC} = 0 \text{ or } 3.6 V,$ $V_{CC} = 0 \text{ or } 3.6 V,$ $V_{CC} = 0 \text{ or } 3.6 V,$ $V_{CC} = 0,$ $V_{CC} $	$ \begin{array}{c} V_{CC} = 2.7 \text{ V}, & I_{I} = -18 \text{ mA} \\ \hline V_{CC} = 2.7 \text{ V} \text{ to } 3.6 \text{ V}, & I_{OH} = -100 \mu\text{A} \\ \hline V_{CC} = 2.7 \text{ V}, & I_{OH} = -8 \text{ mA} \\ \hline V_{CC} = 3 \text{ V}, & I_{OH} = -32 \text{ mA} \\ \hline I_{OL} = 100 \mu\text{A} \\ \hline I_{OL} = 24 \text{ mA} \\ \hline I_{OL} = 24 \text{ mA} \\ \hline I_{OL} = 24 \text{ mA} \\ \hline I_{OL} = 32 \text{ mA} \\ \hline I_{OL} = 64 \text{ mA} \\ \hline V_{CC} = 3 \text{ V} & V_{I} = \text{V}_{CC} \text{ or GND} \\ \hline V_{CC} = 0 \text{ or } 3.6 \text{ V}, & \nabla_{I} = 5.5 \text{ V} \\ \hline V_{CC} = 0 \text{ or } 3.6 \text{ V}, & \nabla_{I} = 5.5 \text{ V} \\ \hline V_{CC} = 0 \text{ or } 3.6 \text{ V}, & \nabla_{I} = 5.5 \text{ V} \\ \hline V_{CC} = 0 \text{ or } 3.6 \text{ V}, & \nabla_{I} = 5.5 \text{ V} \\ \hline V_{CC} = 0 \text{ or } 3.6 \text{ V}, & \nabla_{I} = 0 \\ \hline V_{CC} = 0, & \nabla_{I} \text{ or } V_{O} = 0 \text{ to } 4.5 \text{ V} \\ \hline V_{I} = 0 \\ \hline V_{CC} = 3.6 \text{ V} & V_{I} = 0 \\ \hline V_{CC} = 3 \text{ V} & V_{I} = 0 \text{ to } 3.6 \text{ V} \\ \hline V_{I} = 2 \text{ V} \\ \hline V_{CC} = 3 \text{ V} & \nabla_{I} = 0 \text{ to } 3.6 \text{ V} \\ \hline V_{CC} = 1.5 \text{ V to } 0, \text{ V}_{O} = 0.5 \text{ V to } 3 \text{ V}, \overline{OE}/OE = \text{ don't care} \\ \hline V_{CC} = 3.6 \text{ V}, \text{ I}_{O} = 0, \text{V}_{I} = \text{V}_{CC} \text{ or GND} \\ \hline V_{CC} = 3.6 \text{ V}, \text{ I}_{O} = 0, \text{ V}_{I} = \text{V}_{CC} \text{ or GND} \\ \hline V_{CC} = 3.6 \text{ V}, \text{ I}_{O} = 0, \text{ V}_{I} = \text{V}_{CC} \text{ or GND} \\ \hline V_{CC} = 3.6 \text{ V}, \text{ I}_{O} = 0, \text{ V}_{I} = \text{V}_{CC} \text{ or GND} \\ \hline V_{CC} = 3.6 \text{ V}, \text{ I}_{O} = 0, \text{ V}_{I} = \text{V}_{CC} \text{ or GND} \\ \hline V_{CC} = 3.6 \text{ V}, \text{ I}_{O} = 0, \text{ V}_{I} = \text{V}_{CC} \text{ or GND} \\ \hline Outputs \text{ high} \\ \hline Outputs \text{ low} \text{ I}_{O} \text{ O} \text{ O} \\ \hline V_{I} = 3 \text{ V or 0} \\ \hline \end{array}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

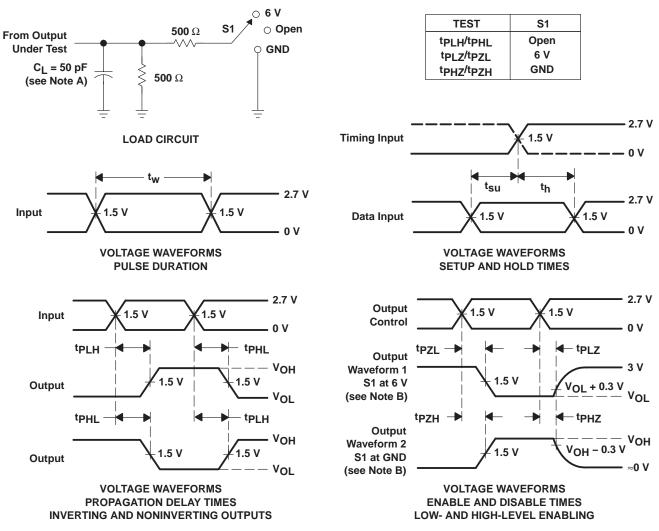
[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. [‡] Unused pins at V_{CC} or GND

§ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. \P This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

SN74LVTH16501-EP **3.3-V ABT 18-BIT UNIVERSAL BUS TRANSCEIVER** WITH 3-STATE OUTPUTS SCBS784 - NOVEMBER 2003

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

						V V _{CC} = 2.7 V		UNIT
				MIN	MAX	MIN	MAX	
fclock	f _{clock} Clock frequency						150	MHz
	two Pulse duration	LE high	LE high			3.3		
tw	Pulse duration	CLK high or low	3.3		3.3		ns	
		A before CLKAB↑		2.1		2.4		
		B before CLKBA↑		2.1		2.4		
t _{su}	Setup time		CLK high	2.4		1.6		ns
		A or B before LE↓ CLK low		1.4		0.5		
	Held Cove	A or B after CLK↑		1		0		
th	Hold time	A or B after LE \downarrow		1.7		1.7		ns


switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM					V _{CC} =	UNIT	
	(INPUT)	(OUTPUT)	MIN	TYP†	MAX	MIN	MAX	
fmax			150			150		MHz
^t PLH	B or A	A an D	1.3	2.7	3.7		4	
^t PHL	B OF A	A A or B		2.4	3.7		4	ns
^t PLH	LEBA or LEAB	A at D	1.5	3.4	5.1		5.7	
^t PHL	LEBA OF LEAD	LEBA or LEAB A or B		3.5	5.1		5.7	ns
^t PLH		A at D	1.3	3.5	5.1		5.7	
^t PHL	CLKBA or CLKAB	A or B	1.3	3.4	5.1		5.7	ns
^t PZH		A	1.3	3.4	4.8		5.5	
^t PZL	OEBA or OEAB	A or B	1.3	3.4	4.8		5.5	ns
^t PHZ	OEBA or OEAB	A or B	1.7	4.2	5.8		6.3	ns
^t PLZ	UEDA UI UEAB	AUD	1.7	3.8	5.8		6.3	115

 $\overline{\dagger}$ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SCBS784 - NOVEMBER 2003

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins I	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CLVTH16501IDGGREP	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
V62/04714-01XE	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

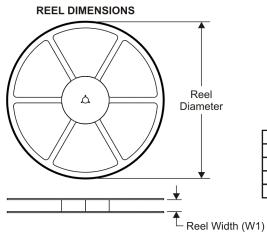
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

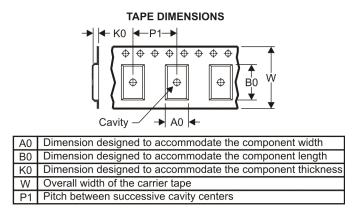
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

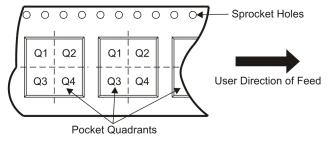
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


OTHER QUALIFIED VERSIONS OF SN74LVTH16501-EP :

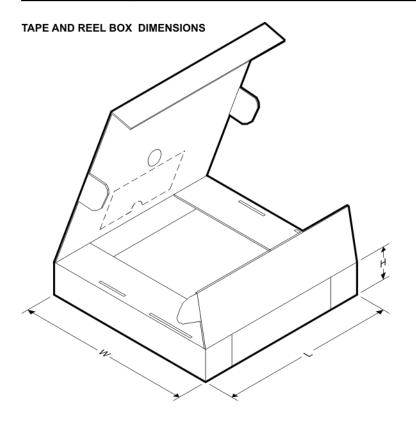

- Catalog: SN74LVTH16501
- Military: SN54LVTH16501

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CLVTH16501IDGGREP	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

5-Aug-2008

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CLVTH16501IDGGREP	TSSOP	DGG	56	2000	346.0	346.0	41.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated